
Neohapsis Labs Present

A Donkeys With Hats
Production

Starring

Greg Ose
Cris Neckar

Malware Kombat

Forensic Fail

Malware In Wild Detection

Malware In Wild Detection

HOW MALWARE IS
DETECTED

• The obvious
• Files that shouldn’t exist
• Processes that shouldn’t be running
• Changes to user accounts

• The stupid (crappy code)
• Oopses
• Panics
• BSODs
• Don’t touch the kernel unless you know what you are
doing…
• Know what you’re patching

• Network sniffing or remote port scanning
• AV and rootkit detection methods

Malware In Wild Detection

ROOTKIT DETECTION
METHODS

• Signature based (typical AV)
• Behavioral analysis

• Ask for the same information in multiple ways and check
for different responses
• Heuristics based detection

• spawn shell, redirect IO to socket, connect socket
outbound
• CreateRemoteThread(), WriteProcessMemory()

• Typically high false positive rate
• Integrity monitoring

• Critical file integrity monitors (tripwire, etc)
• Code integrity checks (syscall table, IDT, any other static
(per kernel) values)

Malware In Wild Detection

CODE INTEGRITY
CHECKS

System.map

c017f470 T
sys_getdents
c017f630 T
sys_getdents64

sys_call_table[]

sys_getdents ==
f98245c0
sys_getdents64 ==
f982abcc

• Similarly we can check interrupt descriptor table (IDT)
entries against know interrupt handlers.

• Any other static function pointers can be checked in this
way (although checking all of them could be painful).

vs

Malware In Wild Detection

SYSCALL CASE STUDY

IDT

Syscall.

sys_get

vfs_rea

file-

struct file_operations {
 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
 ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
 ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
 int (*readdir) (struct file *, void *, filldir_t);
 …
};

Malware In Wild Detection

NEW TARGET?

• If we modify ext3_file_operations->readdir to an evil hook,
we gain control of sys_getdents() for files residing on an ext3
filesystem
• This pointer is dynamic and will likely point to a variable
address in a module providing the filesystem driver
• This becomes non-trivial to check (tons of dynamic
functions pointers with variable locations)
static int (*old_readdir)(struct file *, void *, filldir_t);
static int evil_readdir(struct file * filp, void * dirent, filldir_t filldir) {
 r = old_readdir(filp, dirent, filldir);
 // Modify returned dirent buffer
 return r;
}

int module_init(void) {
 ...
 fs_dirops = (struct file_operations *)ADDRESS_OF_ORIG_FS_READDIR;
 old_readdir = fs_dirops->readdir;
 fs_dirops->readdir = evil_readdir;
 ...
}

Malware In Wild Detection

TAKING IT
FURTHER

• Aside from file hiding we can implement similar hooks
of dynamic file operations to accomplish other things

• Process hiding
• Hiding network connections or listening sockets
• Filtering reads for evade tripwire etc

• The file and directory operations for various proc
entries are a goldmine

For Example:
• proc_root_operations
• tcp4_seq_afinfo

Malware In Wild Detection

REMOTE NETWORK
MONITORING

• Attacker needs a way to regain access to a system once
owned and trigger certain actions to be taken by the
rootkit
• Persistent connections are trivially detectable if the
victim can watch network traffic from a host we don’t
own
• Listening is also bad idea as a port scan may hose us
• A combination of these methods makes it very difficult
for us to control the owned system with some assurance
that the traffic won’t be detected

Malware In Wild Detection

A SOLUTION?

• Making the assumption that the owned machine serves
some purpose, connectivity must already exist (HTTPD,
SMTPD, SSHD)
• Why not use legitimate connections to pre-existing
services to create our tunnel?

• Difficult to implement on a case-by-case basis
• Requires modifications to daemon code or some
other nasty hack

Malware In Wild Detection

OUR OLD ENEMY, THE LOG
FILE?

• One thing services have in common are log files (and
they contain client supplied data)
• We can implement a generic pattern based hook below
the write() system call which implements command and
control functionality
• Additionally within write() we can block this write from
completing, keeping our actions out of the logs
• As before, we target dynamic function pointers to avoid
detection through code integrity checking

Malware In Wild Detection

IMPLEMENTING OUR
HOOK

write(
 [/var/log/messages file descriptor],
 "Apr 23 14:41:53 owned sshd[18346]: Accepted keyboard-interactive/pam for H4X0R from 66.147.239.94 port
31337 ssh2\n",
 [Length]
)

write(
 [/var/log/httpd/access_log file descriptor],
 "66.147.239.94 – H4X0R - [23/Apr/2010:14:41:53 -0600] \"GET / HTTP/1.1\" 200 3825",
 [Length]
)

write(
 [/var/log/messages file descriptor],
 "Apr 23 14:41:53 owned sshd[18346]: Accepted keyboard-interactive/pam for BEGINMAGIC[Cmd]ENDMAGIC from
66.147.239.94 port 31337 ssh2\n",
 [Length]
)

write(
 [/var/log/httpd/access_log file descriptor],
 "66.147.239.94 – BEGINMAGIC[Cmd]ENDMAGIC - [23/Apr/2010:14:41:53 -0600] \"GET / HTTP/1.1\" 200 3825",
 [Length]
)

Malware In Wild Detection

IMPLEMENTING OUR HOOK

if (strcmp(filp->f_path.dentry->d_name.name, LOGFILE_NAME) == 0) {
 buffer = (char *)kmalloc(len, GFP_KERNEL);
 if (!buffer) goto out;
 copy_from_user(buffer, buf, len);
 if ((p = strstr(buffer, BEGINMAGIC)) == NULL) goto freeout;
 // parse command from the buffer
 return SUCCESS!;
}
freeout:
kfree(buffer);
out:
return o_filewrite(filp, buf, len, ppos);

Malware In Wild Detection

Malware Executable Analysis

Malware

EXECUTABLE ANALYSIS
PROCESS

• Identify malicious executables
• Send off to appsec experts (aka Neohapsis) for analysis
• Unpack if necessary, as a base-case

• Load executable up to OEP
• Dump memory at that point (right before execution)

• Start trying to figure out what exactly it is doing
• Static and Runtime Analysis

• IDA, Olly/ImmunityDBG, Wireshark, etc
• Identify remote connections and hosts
• Identify control channels and mechanisms
• Analyze impact that this may have on the compromised
server

Executable Analysis

Malware

TYPICAL EXECUTABLE FILE ANALYSIS
COUNTERMEASURES

• Anti-debugging
• Runtime tricks to prevent executable from being
debugged
• Once known, easy to defeat
• Boring…

• Packers

• Compression-based, simple obfuscation
• Boring…

• Cryptors

• Encryption-based packers
• Interest starts here
• What is the main hurdle here? Key Storage!

• Malware we have seen stores the key someplace
in the executable
• Once process is known, key is easily retrievable

Executable Analysis

Malware

THE DRM PROBLEM

• Best DRM systems are those whose content’s benefit
comes from being online, requires authentication to an
uncontrolled 3rd party
• Use this same idea within a cryptor, in our
implementation a kernel module cryptor
• Userspace process that uses init_module to load
decrypted kernel module

Executable Analysis

Question:
• How can
we execute

Answer:
• We can’t,
otherwise

Malware

THE DECRYPTION
PROCESS

1. 3rd party server stores the following information
• Client IP or ID
• Current private key
• Current file location

2. Userspace cryptor loads, makes a request to server
• Gets private key, file location, and new public

key
3. Decrypt and load module
4. Shred current encrypted data
5. Re-encrypts kernel module and wipe memory of

plaintext
6. Store to a new location and send new location to

server

Executable Analysis

ENCRYPTED FILE
LOCATION

• Encrypted file location not stored on server
• Forensic analysis could target files that have a very high
entropy to identify encrypted data
• What else has a high entropy? Compressed files!
• GZIP files have extra headers, can put our encrypted
kernel module in here (http://www.faqs.org/rfcs/
rfc1952.htm)

• If FLG bit 2 == 1 (FEXTRA), we have extra optional
fields to store data

•What are some fun GZIP’ed files that no one cares
about?

• Manpages!
• Malware can be evil and informative all at the same
time!

Executable AnalysisMalware

ID1 ID2 CM FLG MTIME XFL OS

SI1 SI2 LEN LEN Bytes of Data…

WHAT DOES THIS MEAN FOR EXECUTABLE
ANALYSIS PROCESS?

• The decryption key is not stored on the file system
• Decryption key cannot be pulled from network logs
• To get this key you have to interact with an attacker controlled
server
• This server can implement strict heuristic checks to see if the
decryption key should be nuked

• Source IP address
• Current running processes on the machine
• Time since boot
• … infinite list
• Any combination of these values

• Static analysis process has just one chance to get this information
or forever loses the ability to decrypt the code

• wireshark; ./evil.exe … == FAIL
• strings evil.exe; wget http://... == FAIL
• … == FAIL

• Requires a strong coordination between the owned company, the
people who did disk acquisition, and the people doing the file
analysis

Executable AnalysisMalware

Executable AnalysisMalware

Malware Forensic Tools

Malware Forensic Tools

ONE FINAL FRONT

• The few, the proud, the court approved forensic tools
• Either EnCase or FTK is used in almost every case involving
digital forensics
• When less vetted (less popular) software is used, there is a
high risk that the defense will question the methods used

• Incentive to use popular tools
• Self perpetuating process (the more they are used the
more they will be used in the future)

Malware Forensic Tools

SECURE ++

• So how do these “highly vetted” tools hold up?
• Lets talk 0-day

Malware Forensic Tools

BUT WHY PICK ON ONE?

• Specialized tools need the same specialized code, so why not
buy it from a (unspecified) third-party?
• Cross-application vulnerabilities are awesome
• Opps… we owned forensics

Malware Forensic Tools

SO WHAT DOES THIS
MEAN?

• Once we control the forensic tool, we control the examiner’s
experience arbitrarily
• We can implement a rootkit that targets the specific tool
used

• File hiding
• Incorrect search results
• Planted evidence

• We don’t even have to worry about payload size or delivery
as we have unlimited storage in the drive image
• Typically, forensic examiners’ systems should not have
network connectivity so our payload should be a self
contained package

Malware Forensic Tools

Malware Forensic Tools

Demo Time

Malware Forensic Tools

Malware

Flawless 0-day

Forensic Tools

Questions?

