
Defying Logic

Theory, Design, and Implementation

of Complex Systems for

Testing Application Logic

Rafal Los & Prajakta Jagdale – HP Application Security

FOUNDATIONS

Act 1 – The Pledge

LET’S TALK ABOUT LOGIC

…FOLLOW THE RABBIT.

Define: Application Logic

Just what is ―application logic‖?

―Design components of a program,

including the sequencing of steps

prescriptive for how to execute intended

business processes in a piece of

software‖

Logic Primer

A business process, ordering

Log In Select

Restaurant

Add

Items

Verify

Order

Add

Payment

Transaction

Success

Loyalty

Points

Log Out

(quit)

Logic Primer

A broken business process?

Log In Select

Restaurant

Add

Items

Verify

Order

Add

Payment

Loyalty

Points

Transaction

Success

Log Out

(quit)

Can we manipulate intended process?

Log In Select

Restaurant

Add

Items

Verify

Order

Add

Payment

Loyalty

Points

Transaction

Success

Logic Primer

Log Out

(quit)

Logic Primer

In this simple example:

Manipulate a business process

Early loyalty points without paying

– Points = fraud (free stuff!)

– Free meals = financial lo$$ to vendor

Business process manipulated = theft,

fraud, financial loss

Define: Logic Defect

A defect that exposes the component

business processes (or execution flows)

to manipulation from the attacker

perspective to achieve unintended and

undesirable consequences from the

design perspective; without disrupting

the general function or continuity of the

application.

New Classifications

How is this different than existing

classifications?

– OWASP Top 10

– WASC Threat Classification v2

– MITRE CWE Top 25

A fundamentally different way of

looking at software vulnerabilities.

Best “fit”

Building Onto CWE

– MITRE CWE Top 25

―Classification of business-logic weaknesses is worth deeper

investigation by researchers. While business logic rules are

domain-specific, there may be some domain-independent

patterns to them. We are likely to find new wrinkles to old

problems, and maybe some new problems that will be easier to

find once we know what to call them.‖ –Steven Christey (MITRE)

―Taxonomy‖

2 Types of logic-based defects

• Privilege manipulation

• Transaction control manipulation

Privilege Manipulation

Flaw based on broken or incomplete

authentication/authorization mechanism

• Horizontal/vertical privilege escalation

• Access unauthorized content

• Perform privileged system functions

Privilege Manipulation

<input type="text" name="username" size="30"

tabindex="100" value=―Wh1t3Rabbit"

id="username― Role=―user”>

<input type="text" name="username" size="30"

tabindex="100" value=―Wh1t3Rabbit"

id="username― Role=―admin‖>

Transaction Control

Manipulation
Flaw based on broken business process

continuity allowing for manipulation of

intended business process/flow

• Circumvent system limitations

• Tamper with application flow

• Manipulate business resources

Transaction Control

Manipulation

I want MORE

than 10 tickets!

Transaction Control

Manipulation

Transaction Control

Manipulation

Manipulating ―Logic‖

The server should control the logic of the

application.

In this case, the server should know 30 is

not a valid number …right?!

………………………..Nope.

To Be Clear

The key point to remember:

This research seeks to better enable the

tester through automation.

We are addressing ‗designed processes‘

We are not addressing ‗back-end

business process‘ (non-visible)

Starting a Wave

FEW previously given talks or papers on

logic vulnerabilities

– Ideas  talks  papers  experiements?

– A more tangible/usable effort is needed

NO existing R&D effort by a vendor in this

space as far as we could tell —

proprietary or open source

Lots of Talking…

―So why aren‘t there any readily available,

even semi-mature tools or frameworks

for testing application logic?‖

APPLICATION LOGIC VS.

AUTOMATION

Act 2 – The Turn

Logic vs. Automation

Application Logic

 hard to define!

 domain-specific

 Industry

Business process

 not pattern-based

not easy to ‗RegEx‘

Automation

o pattern-dependent

o programmatic

o scale is in

repeatability

o no concept of

process

Challenges

For humans

• understand the

application

– Business processes

– ‗Application flow‘

• drive automation

– work with technology

• document & repeat

For technology

• map the application

processes

– simple, flexible maps

• identify control logic

– critical parameters

• differentiate test

success or failure

Application Logic

Application ―logic‖ is tricky…

– found on the server side

– found in the client ―cache‖ (offline use?)

– no consistent patterns to match/test

• Remember the AT&T/iPad email hack?

– logic implies human thought required

Simple Logic

Simplest logic block example…

If <expression> Then

do something

ElseIf <expression> Then

do something

Else

do something else

End If

Client (browser)

DOM

Challenges

Bridging a vast disconnect

var1=A

var2=B

var3=1

var4=@b

var5=

App Server

IF (var1 = A) {

do IsUser; }

ELSEIF (var1 = B)

{

do IsAdmin; }

ENDIF

Challenges

How to overcome random ―fuzzing‖

• identify var1 as a critical parameter

– Human or automation-driven

• manipulate var1

– human or technology driven

– ―fuzzing‖ or data-set driven

Technology enables scalability & repeatability

Future State  Fantasy

• Point ‗n‘ shoot application logic testing

– This was never a good strategy anyway*

• Dynamic testing tool ‗learns‘ business

processes, logic flow and thinks

– I‘ve seen this movie before …‖SkyNet?‖

• Security continues to operate

independent of business

Future State  Reality

• Logic testing enabled through

automation

– Base logic mapping on QA methodology

– Continue to evolve combined functional,

exploratory & security testing

• Technology allows repeatable testing

throughout application after initial setup

This Has Been Coming

• Initially I talked about mapping

application execution flow…

• Dynamic testing technology matured

• Static testing technology matured

• New ―hybrid‖ technology gives even

greater insight into application function

BUILDING TEST

FRAMEWORKS

Act 3 – The Prestige

Overview

Test framework will constitute 3 phases

I. Capturing the assumed application

behavior

II. Manipulation of the workflows to evoke

(un)expected behavior patterns

III. Analyzing the results of the workflow

manipulations to detect non-conformance

with defined business processes

3 Step Process

• Model the business process

– create valid workflows

• Manipulate application workflow

– ‗fuzzing logic‘

• Analyze the results

– Were we successful in evoking a non-

standard response?

Modeling the Business

Processes

• Purpose: Discover business processes that

define the application workflow

• Challenge: Application workflow

specifications are rarely documented and

are often unknown to the testers

• Solution: Passively monitor & record normal

user behavior through the application

Modeling the Business

Processes

Proposed Approach

Devise a mechanism to:

– Capture permissible user actions

– Store the state of the application before

and after the invocation of each user event

– Record expected transitions between

application states

Manipulating the Application

Workflow
• Purpose: Induce deviations in the application

behavior that do not conform with the

assumed business rules

• Challenge: Meaningfully manipulating

application‘s behavior with minimal

knowledge about its purpose & context

• Solution: Apply pre-defined modifications to

the state identifiers and state transactions

recorded in phase I

Manipulating the Application

Workflow

Proposed Approach

Discover logic defects by:

– Modifying the state of the application

before passing it as an input to a

transaction

– Fuzz the sequence of user actions

captured during the phase I to detect bugs

in transaction control

Analyzing the Results

• Purpose: Determine the success of

workflow manipulation

• Challenge: Measuring the deviation in

application behavior with minimal

understanding of application context

• Solution: Apply comparison metrics to

infer deviations in the application

workflows

Analyzing the Results

Proposed approach

– Measure the impact of workflow manipulations on

the application state

• compare state identifiers (e.g. system variables, page

DOM) in the tainted workflow with the original

– Apply pre-defined set of rules to detect violations

of the business rules governing the application

flow

• E.g. An acceptable application end state can be reached

despite inaccuracies in one or more intermediate states

of the workflow

DEMO!

a rough idea of how this could

work one day

Work In Progress

If you are interested in

discussing, contributing, or

expanding this research in any

way – contact us.

